最新最快科技资讯
太阳能光伏网

厉害了!神经再生电子器件助推人工智能硬件集成

效仿人类大脑神经结构的类脑计算由于其在人工智能领域高效率和低能耗的特性,有望成为未来的大数据芯片构架,已经成为世界各国激烈争夺的新前沿和新制高点。大脑是一个不断进化的生命体器官,具有显著的可塑性。大脑的可塑性包括神经元的形成以及突触的形成,统称为神经再生。这一现象在人类和其他动物中已经被广泛发现,并且对于生物体的持续学习和脑损伤后神经回路的修复至关重要。

关于神经再生的早期研究主要集中在歌唱鸟(sing bird),这缘于这类鸟儿即使在成年后仍可在一生中随季节不断更换自己的歌曲曲目。这种可以终身学习的能力对于行为能力的提高和神经系统恢复具有重要意义。假设我们可以在神经电子器件中模仿这类动态神经再生行为,我们就可以制造出能够终身学习的“活机器”。

另外,传统中静态的、固定功能的神经器件网络在人工智能训练领域也有着明显的不足。这类模型通常在固定静态数据上进行训练,因此在实际应用过程中当新数据以不断增加的方式呈现给神经网络时,它会干扰前期学习的知识,导致性能不佳,被称为灾难性遗忘。近期理论研究结果表明,制备一种动态的、多功能的、可以实现人工突触和人工神经元等多种神经功能动态转换的器件网络可能有效地解决这一难题。并且进一步研究发现,在提供相同训练资源的情况下,动态网络与静态网络相比显示出更好的学习性能。

在此研究领域背景下,由普渡大学(PurdueUniversity)材料工程学院Shriram Ramanathan教授团队联合美国宾夕法尼亚州立大学、能源部阿贡国家实验室和布鲁克海文国家实验室、加州大学圣克拉拉分校等研究团队,通过纳秒级电压脉冲在钙钛矿强关联氧化物中驱动质子迁移,成功的展示了电子器件中的动态神经再生:在单器件中按需展示神经元、神经突触和记忆电容器等不同功能,并且实现这些功能的动态电压脉冲转换。该研究成果于2022年2月4日以“Reconfigurable perovskite nickelate electronics for artificial intelligence”为题,以Research Article的形式发表于顶级期刊Science。

文章通讯作者为北京航空航天大学教授张海天(原普渡大学Gilbreth Research Fellow)、普渡大学博士生Tae Joon Park以及普度大学教授Shriram Ramanathan。Hai-Tian Zhang、Tae Joon Park、A. N. M. Nafiul Islam, Dat S. J. Tran, Sukriti Manna, Qi Wang为共同第一作者。在同一期Science杂志中还推出了观点评述,专门介绍和讨论了这一最新的研究结果并提出了建设性的意见。

图1展示了这一神经再生动态器件的工作示意图。稀土钙钛矿镍酸盐(如SmNiO3和NdNiO3)是一类在氢离子掺杂时可以产生室温电子相变的强关联量子材料。在氢离子掺杂后,可以通过电场调控这类材料中的氢离子分布,实现动态多功能神经器件。基于第一性原理的模拟工作也表明,氢离子在镍基相变材料中存在着大量的亚稳态(~125个),并且不同亚稳态的能量分布大不相同,其能量分布区间高达160 meV/atom 。因此这些不同的亚稳态对镍基相变材料能带调控行为也差别巨大,可以达到~0.9 eV的禁带宽度调控区间。分子动力学分析也发现氢离子在不同亚稳态之间的电场迁移动力学行为大不相同,其迁移能垒可以低至~0.2 eV或者高达~0.7 eV。低的迁移能垒有利于实现人工神经突触的模拟型(analog)渐变电阻行为;高的迁移能垒有利于实现人工神经元的数字型(digital)突变电阻行为,从而在同一器件中实现多种神经功能的可编译性转化与调控。通过电场我们可以控制氢离子在这些亚稳态之间迁移,实现多种类脑计算功能。

为了展示这一动态多功能类脑器件的应用实例,我们在Reservoir Computing (RC)框架(图1(c))中使用基于NdNiO3(NNO)器件的实验数据进行机器学习。RC,一般称为储备池计算或者蓄水池计算,是一种受大脑启发的机器学习架构,可以解决传统递归神经网络(RNN)中常见的训练复杂性和参数爆表问题。训练结果表明,基于NNO的器件在MNIST, Isolated Spoken Digits和ECG Heartbeat等多种学习任务和应用场景中均可以用更少的资源实现高效学习。此外,这一器件的多功能动态电场转换特性为它开启了在下一代人工智能构架中的新应用,比如动态神经网络领域。Grow-When-Required (GWR)网络(“按要求增长”自组织神经网络)就是这样一个很好的例子(图1(d)和图2),它根据竞争性Hebbian学习创建新节点及其互连,并且扩展了自组织神经网络的概念。这一网络通过以无监督的方式添加或删除网络节点,以准确地逼近输入数据。在实际模拟学习过程中,基于NNO的动态神经网络在消耗同样资源的情况下的识别准确率最高可以比静态网络高250%。

动态神经网络作为新兴的神经网络概念,可以使AI机器在复杂多变的环境中比传统的静态网络做出更准确的决策。与此同时,多功能神经器件可以在芯片面积和功率受限的硬件环境中简化计算任务和人工智能电路设计。这一多功能动态器件未来将在动态环境的人工智能领域具有潜在应用,例如自动驾驶、机器人、虚拟和增强现实等。

最后,特别感谢阿贡国家实验室APS光源的Hua Zhou博士和布鲁克海文国家实验室的Shaobo Cheng博士和Yimei Zhu博士以及伊利诺伊大学芝加哥分校的Nan Jiang教授对该工作的大力协助。

关键词:助推人工智能硬件神经再生电子器件

最新相关

联得装备固态电池设备已出货

6月27日,联得装备在互动平台表示,公司涉及固态电池新工艺的超声波焊接设备已发货至客户。该设备应用于固态电池生产的关键环节,标志着公司在新能源装备领域取得新进展。免责声明: 本文内容由开...

中国医药卡贝缩宫素注射液获批

6月27日,中国医药发布公告称,其全资子公司三洋药业收到国家药监局签发的卡贝缩宫素注射液《药品补充申请批准通知书》。该药品适用于剖宫产手术中预防子宫收缩乏力和产后出血。免责声明: 本文...

山大地纬控股股东拟无偿划转24.59%股份

6月27日,山大地纬发布公告称,公司控股股东山东山大资本运营有限公司计划将其持有的公司24.59%股份无偿划转至山东高速集团有限公司。双方已签署股权划转意向性协议,该事项可能导致公司控股股东...

理想汽车预计Q2交付10.8万辆

北京时间2025年6月27日,理想汽车发布公告称,预计将在第二季度交付约10.8万辆汽车。此前,公司给出的交付量展望为12.3万至12.8万辆。此次调整反映出市场环境变化对交付计划的影响。免责声明: 本...

李开复: 中国AI应用有望跻身世界顶尖

在今日于武汉举行的中国人工智能创新大会上,创新工场董事长李开复表示,随着大模型技术的突破与成本下降,AI正加速从实验室向生产力工具转型。他指出,模型公司正探索技术与行业场景的深度融合,...

理想汽车美股盘前跌超5%

6月27日,理想汽车在美股盘前交易中股价短线跳水,跌幅超过5%。此前,公司下调了第二季度的车辆交付量预期。市场分析认为,交付量调整可能是引发盘前股价波动的主要原因。免责声明: 本文内容由开...

我国科学家实现小鼠耳廓再生

近日,北京华大生命科学研究院联合北京生命科学研究所,首次发现Aldh1a2基因表达不足导致视黄酸合成不足是高等哺乳动物小鼠耳廓再生失败的核心机制。通过激活该基因,成功实现小鼠耳廓再生,为理...

北京国鑫中亿科技完成天使轮融资

近日,北京国鑫中亿科技发展中心(有限合伙)宣布完成天使轮融资,本轮由北京雷地财富资产管理有限公司独家投资。该笔资金将用于加速技术研发、深化产业生态布局,并拓展重点行业数字化服务场景。...